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Abstract

Fully-implicit primitive equation ocean models are useful to study the sensitivity of steady ocean flows to parame-

ters, to determine bifurcations of these flows associated with instabilities and to use relatively large time steps in tran-

sient flow computations. This paper addresses a problem related to the origin of wiggles occurring in fully-implicit

C-grid models. The situation considered is the computation of three-dimensional thermally-driven steady flows in a

midlatitude spherical sector. We determine the reason why in a coarse resolution C-grid implicit model, the values

of the lateral friction coefficients are restricted to far higher values than for the same B-grid model. The analysis also

reveals why the B-grid discretization is superior for the computation of this type of flows.
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1. Introduction

Over the last decades many different large-scale ocean models have been developed, each with the aim to

simulate the basin scale and/or global ocean circulation. They can be distinguished by the representation of

the vertical structure of the flow, e.g. level models versus layer models, the type of horizontal grid, such

as a B-grid or a C-grid, and the parameterizations of friction, diffusion, and convection. There are
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low-resolution versions of these models, used for climate type studies, and high-resolution versions, used

for detailed studies of the ocean currents [12].

Most of these models use an explicit time discretization, for example a leap-frog scheme or an

Adams–Bashforth scheme, each having their typical constraint on the time step because of numerical

stability. When the horizontal resolution is doubled in both directions in these models, the time step
usually has to be decreased by a factor between 2 and 4. This factor, for example, depends on the type

of representation of lateral friction in the models. When one is only interested in relatively short time

intervals of simulation, this may not be a problem. To study the sensitivity of equilibrium large-

scale ocean flows to forcing conditions or mixing representations, the computations may become extre-

mely costly due to the very long equilibration time scale (in the order of thousand years) of the

circulation.

Motivated by the problem of determining the sensitivity and stability of equilibrium flows, fully-implicit

ocean models have been developed over the last decade [7,23]. One of the direct advantages of these meth-
ods is that relatively large time steps can be taken, since the time step is determined by accuracy instead of

by numerical stability constraints. Another direct spin-off of the implicit formulation is the availability of

the Jacobian matrix. This matrix can be used in a pseudo-arclength continuation method [14,17] to follow

branches of steady states in parameter space. The Jacobian matrix is also needed to determine the linear

stability problem of these steady states which can be determined by solving the corresponding generalized

eigenvalue problem.

Since many readers may be unfamiliar with the continuation methodology as applied to ocean modeling,

we sketch the relation of this approach to more traditional ocean modeling using a simple example. Con-
sider the two-dimensional system of differential equations, given by
dx
dt

¼ k� x2; ð1aÞ

dy
dt

¼ x� y; ð1bÞ
where (x,y) are the state variables and k is a parameter in the problem. When solved as an initial value

problem, x(t) and y(t) are followed in time, for each k > 0, until a steady state is reached. If for these values

of k, x(t) is plotted in time, for the system (1) a plot as in Fig. 1(a) results. In each case, xðtÞ ! �x for t ! 1.

To study sensitivity of the equilibria versus k, only the end points �x are of interest and typically one would

show a plot as in Fig. 1(b).

With continuation methods one aims to directly compute the curve in Fig. 1(b) without going through
the transient calculations as in Fig. 1(a). Instead of solving the time-dependent equations, these techniques

directly tackle the steady equations, i.e. the model equations with the time-derivatives put to zero. For the

example (1), these are
k� �x2 ¼ 0; ð2aÞ
�x� �y ¼ 0. ð2bÞ
Solving directly for the latter has one important additional advantage. For the steady states, we find
�x ¼ �y ¼

ffiffiffi
k

p
and �x ¼ �y ¼ �

ffiffiffi
k

p
for each value of k > 0. However, looking at the evolution of small pertur-

bations on these states, say
x ¼ �xþ ~x; y ¼ �y þ ~y; ð3Þ
the linearized equations from (1) are



Fig. 1. Solution of the system (1), with (a) transient solutions for several values of k, (b) the steady state values of x versus k and (c) the

complete bifurcation diagram of (1).
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d~x
dt

¼ ð�2�xÞ~x; ð4aÞ

d~y
dt

¼ ~x� ~y. ð4bÞ
For the solution �x ¼ �y ¼
ffiffiffi
k

p
, the perturbations will decay and hence the steady state is stable and it will

be found by transient integration (as in Fig. 1(a)). The solution �x ¼ �y ¼ �
ffiffiffi
k

p
is unstable since perturbations

on it will grow and hence it will never be reached by the transient approach. However, by solving directly

for the steady equations both solutions will be found, also the unstable one! In Fig. 1(c), the steady-state

branches, as they are computed by continuation methods are plotted. Also the saddle-node bifurcation at
�x ¼ �y ¼ k ¼ 0 can be explicitly computed with these techniques.

The application of continuation methods using fully-implicit ocean models [23] have helped clarify the

role of multiple equilibria in rapid changes in the global ocean circulation induced by freshwater anomalies
[6]. In addition, a start of a classification of oscillatory instabilities of basin wide and global ocean flows has

been made [18]. One of these modes, with interdecadal period, has lead to an explanation of the physical

mechanism of the Atlantic Multidecadal Oscillation [9]. Finally, implicit (Crank–Nicholson) time-stepping

was used to determine thresholds for collapse of the thermohaline circulation in a fully-implicit global

ocean model [8].
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The implicit ocean models are, however, still far from state-of-the-art ocean models. For example, the

representation of mixing processes of heat, salt and momentum is still limited to Laplacian formulations

with constant (eddy) mixing coefficients. As shown in Weijer et al. [23], the magnitude of the coefficient

of horizontal mixing of momentum, AH, was quite restricted. Whereas in explicit low-resolution ocean gen-

eral circulation models, AH = 2.5 · 105 m2 s�1 is used as a standard value on a 4� · 4� horizontal resolution,
strong wiggles are found in the fully-implicit model in Weijer et al. [23] for these values. Hence, the value of

AH used in Weijer et al. [23] was about a factor hundred larger than this standard value. By comparison

with explicit model results, it was shown [19] that the thermohaline flow was not qualitatively affected

by AH. Nevertheless, the lack of an understanding of the underlying numerical problem has been quite

unsatisfactory.

It is of interest to investigate whether this problem is due to the C-grid used or that it can be attributed to

other sources. Also in explicit models, problems with the C-grid discretization have been noticed [13] and

more practical fixes were suggested. The impact of different horizontal grids on transient ocean and atmo-
spheric flows was already discussed in [2,3]. In Wajsowicz [21], the effect of the B- and C-grid discretization

of the shallow-water equations on free wave propagation was addressed. It is shown, for example, that the

dispersion relation of high-frequency waves is not well represented on the C-grid. In later studies, the prop-

erties of (discrete) Kelvin and planetary waves and their role in (numerical) ocean adjustment was deter-

mined [22,20,10,1].

In steady computations, the wiggles seem to be a lot worse than in transient computations as then

wiggles extent over the whole domain instead of staying only locally along boundaries. In this paper, we

focus on this numerical problem and study it for ocean flows in the single-hemispheric ocean basin config-
uration as in Dijkstra et al. [7]. The configuration is defined in Section 2 and typical computations of flows

illustrating the numerical problems, are shown in Section 3. In Section 4, we present a detailed analysis of

the problems of the implicit models on the C-grid and explain the restrictions on the magnitude of AH. The

analysis also reveals why these problems do not occur for implicit models on the B-grid.
2. Ocean flows in a single-hemispheric basin

The formulation of the implicit model and a discussion of the solution methods was presented in Dijk-

stra et al. [7]. It is, however, important that readers precisely know what equations are being solved without

having to dig into previous papers. Hence the flow situation and the governing equations are briefly

described below.

We consider ocean flows in a model domain on the sphere bounded by the longitudes /w = 84�W and

/e = 20�W and by the latitudes hs = 10�N and hn = 74�N; the ocean basin has a constant depth D. The flows

in this domain are forced by a heat flux QH (in W m�2)
QH ¼ �lðT � T SÞ; ð5Þ
where l (in W m�2 K�1) is a constant exchange coefficient. The heat flux QH is proportional to the temper-

ature difference between the sea-surface temperature T and a prescribed atmospheric temperature TS, cho-

sen as
T Sð/; hÞ ¼ T 0 þ
DT
2

cos p
h� hs
hn � hs

� �
; ð6Þ
where T0 = 15 �C is a reference temperature and DT is the temperature difference between the southern and

northern latitude of the domain. The forcing is distributed as a body forcing over the first (upper) layer of

the ocean having a depth Hm.
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Temperature differences in the ocean cause density differences according to
q ¼ q0ð1� aTðT � T 0ÞÞ; ð7Þ

where aT is the volumetric expansion coefficient and q0 is a reference density. We neglect inertia in the
momentum equations because of the small Rossby number, use the Boussinesq and hydrostatic approxima-

tions and represent horizontal and vertical mixing of momentum and heat by constant eddy coefficients.

With r0 and X being the radius and angular velocity of the Earth, the governing equations for the zonal,

meridional and vertical velocity u, v and w and the dynamic pressure p (the hydrostatic part has been sub-

tracted) become
� 2Xv sin hþ 1

q0r0 cos h
op
o/

¼ AV

o2u
oz2

þ AHLuðu; vÞ; ð8aÞ

2Xu sin hþ 1

q0r0

op
oh

¼ AV

o2v
oz2

þ AHLvðu; vÞ; ð8bÞ

op
oz

¼ q0gaTT ; ð8cÞ

0 ¼ ow
oz

þ 1

r0 cos h
ou
o/

þ oðv cos hÞ
oh

� �
; ð8dÞ

DT
dt

�rH � KHrHTð Þ ¼ o

oz
KV

oT
oz

� �
þ ðT S � T Þ

sT
H

z
Hm

þ 1

� �
; ð8eÞ
where H is a continuous approximation of the Heaviside function, Cp the constant heat capacity and
sT = q0CpHm/l is the surface adjustment time scale of heat. In these equations, AH and AV are the horizon-

tal and vertical momentum (eddy) viscosity and KH and KV the horizontal and vertical (eddy) diffusivity of

heat, respectively. The representation of mixing is very simple and in state-of-the-art ocean models, more

advanced formulations [11] are used. In addition,
D

dt
¼ o

ot
þ u
r0 cos h

o

o/
þ v
r0

o

oh
þ w

o

oz
;

rH � KHrHð Þ ¼ 1

r20 cos h
o

o/
KH

cos h
o

o/

� �
þ o

oh
KH cos h

o

oh

� �� �
;

Luðu; vÞ ¼ r2
Huþ

u
r20cos2h

� 2 sin h
r20cos2h

ov
o/

;

Lvðu; vÞ ¼ r2
Hvþ

v
r20cos2h

þ 2 sin h
r20cos2h

ou
o/

.

Slip conditions are assumed at the bottom boundary, while at all lateral boundaries no-slip conditions

are applied. At all lateral boundaries and the bottom boundary, the heat flux is zero. As the forcing is rep-

resented by a body force over the first layer, slip and no-flux conditions apply at the ocean surface. Hence,

the boundary conditions are
z ¼ �D; 0 :
ou
oz

¼ ov
oz

¼ w ¼ oT
oz

¼ 0; ð9aÞ

/ ¼ /w;/e : u ¼ v ¼ w ¼ oT
o/

¼ 0; ð9bÞ

h ¼ hs; hn : u ¼ v ¼ w ¼ oT
oh

¼ 0. ð9cÞ
The parameters for the standard case are the same as in typical large-scale low-resolution ocean general

circulation models and these values are listed in Table 1.



Table 1

Standard values of parameters used in the numerical calculations

2X = 1.4 · 10�4 [s�1] KH = 1.8 · 103 [m2 s�1] Hm = 250 [m]

D = 4.0 · 103 [m] Cp = 4.2 · 103 [J(kg K)�1] AV = 1.0 · 10�3 [m2 s�1]

aT = 1.0 · 10�4 [K�1] r0 = 6.4 · 106 [m] KV = 2.3 · 10�4 [m2 s�1]

q0 = 1.0 · 103 [kg m�3] sT = 7.5 · 101 [days] DT = 20.0 [K]

Note that the value of AH will be specified in each of the results below.
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Since convection, which occurs in case of an unstable stratification, is not by the hydrostatic model, a

representation is needed to obtain stably stratified solutions. In the results below, we use the global convec-

tive adjustment procedure as described in Dijkstra et al. [7].
3. The occurrence of wiggles

We focus on the steady state solutions and hence time derivatives are put to zero in Eq. (8e). The equa-
tions are discretized in space using a second-order accurate control volume discretization method either on

a staggered Arakawa C-grid (see Fig. 5), we refer to this model below as THCM-C, or an Arakawa B-grid

(see Fig. 6), we refer to this model below as THCM-B. For the advective transport in the temperature equa-

tion, the conservative form is used. After discretization, a system of nonlinear algebraic equations results

which can be written as
Fðx; pÞ ¼ 0. ð10Þ
Here x is the d-dimensional state vector, consisting of the unknowns (u,v,w,p,T) at the grid points, p is the

p-dimensional vector of parameters and F is a nonlinear mapping from Rd · Rp ! Rd. The latter operator is

different for B-grid and C-grid versions.

To compute a branch of stationary solutions in a control parameter, say k, a pseudo-arclength method is

used [14]. The branches of stationary solutions (u(s),k(s)) are parameterized by an arclength parameter s.

Since this introduces an extra unknown, an additional equation is needed and the tangent is normalized

along the branch, i.e.
_uT0 ðu� u0Þ þ _k
T

0 ðk� k0Þ � Ds ¼ 0; ð11Þ
where Ds is the step length, the superscript �T� denotes the transpose, a dot indicates differentiation to s and

u0 indicates a previous solution computed for k = k0.
The system (10) and (11) is solved by the Newton–Raphson method, combined with the adaptive

Shamanskii method, to determine points on the branch of stationary solutions [23]. This method finds

isolated steady solutions, regardless of their stability. The linear systems are solved with the GMRES

method (an iterative linear systems solver) using MRILU (a multigrid oriented) preconditioning tech-

nique [4].

For both THCM-B and THCM-C, the standard horizontal resolution is 4� in the zonal direction, 4� in
the meridional direction and 16 equidistant levels in the vertical. To monitor the flow solutions, we will use

the maximum of the meridional overturning streamfunction w. The quantity w measures the zonally aver-

aged volume transport and it is defined as
cos h
Z /e

/w

v d/ ¼ ow
oz

; cos h
Z /e

/w

w d/ ¼ � ow
oh

. ð12Þ
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The pseudo-arclength continuation starts at the trivial steady solution for DT = 0. The latter is used as a

control parameter and increased up to DT = 20 to find a solution without convective adjustment. Next, the

global adjustment procedure is applied to give the stably stratified flow. For the standard value of param-

eters and AH = 1.6 · 107 m2 s�1, the stably stratified solution w in THCM-C (Fig. 2(a)) is smooth and has

about 24 Sv meridional transport. In Fig. 2(b), the horizontal velocities at the surface are plotted (arrows)
together with the vertical velocity just below the surface (contour lines). For this relatively large value of

AH, the western boundary current is very diffusive and also the upwelling and downwelling regions are

broad. Sinking occurs in the northeast and there is a return flow at depth of opposite direction than the

surface flow.

When AH is next considered as a control parameter in the pseudo-arclength continuation method and

the solution in Fig. 2 is followed to smaller values of AH, problems start to occur at AH = 9.5 · 106 m2 s�1.

It is not possible to continue below this value and the solution starts to display wiggles, first near the eastern

boundary. When for AH = 8.0 · 106 m2 s�1, DT is increased from zero, the Newton–Raphson process has
difficulty to convergence beyond DT = 18.6 K so the standard value (DT = 20 K) cannot be reached. For

AH = 1.6 · 105 m2 s�1, wiggles are already seen at very small values of DT. The meridional overturning

streamfunction and surface velocities of the solution for DT = 2.5 K are plotted in Fig. 3. The solution from
a b

Fig. 2. Equilibrium solutions (with convective adjustment) computed with the THCM-C model. (a) Equilibrium meridional

overturning streamfunction (in Sv) and (b) surface velocities for AH = 1.6 · 107 m2 s�1.

a b

Fig. 3. (a) Equilibrium meridional overturning streamfunction (in Sv) for AH = 1.6 · 105 m2 s�1 and DT = 2.5 K. (b) Surface velocities

for the same solution as in (a).



a b

Fig. 4. Steady solution for standard values of parameters (with convective adjustment) as obtained by the THCM-B model through

pseudo-arclength continuation. (a) Equilibrium meridional overturning streamfunction (in Sv). (b) Surface velocities.
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THCM-C displays wiggles throughout the domain in both w (Fig. 3(a)) and the surface velocities (Fig.

3(b)).

The wiggles are not related to the frictional western boundary (Munk) layer [5] as they are still pres-
ent when the meridional variation of the Coriolis parameter is set to zero. In Dijkstra et al. [7], it was

suggested that these wiggles originate at the eastern boundary and that they are due to errors to resolve

boundary layers. The thickness of the Ekman layers near the continental walls have a typical width of

dE = (AH/f)
1/2, where f = 2X sin h. Resolving these layers requires a value of AH larger than
AH � max
106h674

2Xr20ðD/Þ
2
cos2h sin h; ð13Þ
where D/ is the zonal grid resolution.

However, as this boundary layer is not resolved in the B-grid formulation either for

AH = 1.6 · 105 m2 s�1, one would also expect wiggles to appear in this case. The meridional overturning

w computed with THCM-B for standard values of parameters is plotted in Fig. 4(a). The overturning

flow is confined to the southern latitudes with a maximum volume transport of about 25.9 Sv. The

surface velocities (arrows indicate horizontal velocities and contours are of the vertical velocity) of

the same solution are plotted in Fig. 4(b) and show a strong zonal flow with a maximum near
50�N. Note that the western boundary current is much stronger and has a smaller zonal scale than

the solution in Fig. 2 due to the smaller value of AH. The upwelling/downwelling regions are also much

smaller. The THCM-B solution appears to be smooth and does not suffer from the wiggles appearing

on the C-grid.
4. The origin of the wiggles

The results of the previous subsection suggest that high-frequency components of the error, due to

lack of resolution in the boundary layers at the eastern wall, are amplified strongly in THCM-C, while

hardly so in THCM-B. As they occur at every latitude and also for a zero planetary vorticity gradient,

we can simplify the analysis on a f-plane model in Cartesian coordinates. As the wiggles appear already

at small thermal forcing (small DT), advection of heat is not likely to play a role and we just prescribe

a fixed temperature distribution and consider the solutions of the linear momentum and continuity

equations. These equations can be written as



Fig. 5.
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� fvþ 1

q0

op
ox

¼ AV

o2u
oz2

þ AHr2
Hu; ð14aÞ

fuþ 1

q0

op
oy

¼ AV

o2v
oz2

þ AHr2
Hv; ð14bÞ

op
oz

¼ q0TgaT; ð14cÞ

0 ¼ ou
ox

þ ov
oy

þ ow
oz

. ð14dÞ
The domain is approximately 5000 km in the x-direction and 7000 km in the y-direction. For conve-

nience we take the domain as square with side lengths L = 6000 km and a typical value for f will be

10�4 s�1. We redefine the temperature q0TgaT ! T and prescribe it over the whole domain as T = cy + b.
The nice property of Eqs. (14) is that they allow a relatively simple mode (barotropic/baroclinic) split-

ting. Integration over the total depth of (14a), (14b) and (14c) using the boundary conditions (9a) shows

that, since wind forcing is absent, the vertically averaged horizontal velocities are zero and the vertically

averaged pressure �p is constant. Hence the pressure can be explicitly determined from the temperature field,

which gives for the deviation ~p of the vertically averaged pressure the result
~p ¼
Z z

�D
T dz0 � 1

D

Z 0

�D

Z z

�D
T dz0

� �
dz. ð15Þ
Substitution of (15) into (14a) and (14b) gives two equations for the horizontal velocities, which we denote

by ~u and ~v, because they are the deviations from the vertical averaged zonal and meridional velocities,
respectively. Once these velocities are known, the vertical velocity is solved from (14d).

When this decomposition is implicitly carried out in the linear system of discretized equations, it will turn

out to be possible to compute the amplification factors of the high-frequency components in the solutions.

4.1. C-grid: Discrete equations and barotropic–baroclinic separation

On the C-grid the positioning of the variables is as depicted in Fig. 5. It shows the projections of the 3D

cell on which the mass conservation law (continuity equation) is discretized. Central differences are used for
the discretization. Since we do not have the v-velocities available at the u-points, the four v-velocities

surrounding a u-point are averaged in the discretization of the Coriolis acceleration. The boundary at

the east and west coast runs through the u-points. In order to impose the Dirichlet boundary condition

for the v-point an average perpendicular to the boundary is taken.

For the rectangular domain, one can represent the matrix form of the discretization in an elegant way

using Kronecker tensor products. The Kronecker product is a binary matrix operator that maps two arbi-

trarily dimensioned matrices into a larger matrix with a special block structure. Given an n · m matrix A

and a p · q matrix B, then A � B is the np · mq matrix
Positioning of variables in C-grid, topview (left) and vertical cross section (right). The vertical layout is called the Lorenz grid.



F.W. Wubs et al. / Journal of Computational Physics 211 (2006) 210–228 219
A� B ¼

a1;1B � � � a1;mB

..

. ..
. ..

.

an;1B � � � an;mB

0
BB@

1
CCA. ð16Þ
The discretized operator associated with mixing of zonal momentum is represented as
Lu ¼ AHðIuuz � ðIuuy � Guu
x þ Guu

y � Iuux ÞÞ þ AVðGuu
z � Iuuy � Iuux Þ; ð17Þ
with a similar definition for Lv. Here, Iuu� is an identity matrix and Guu
� is a tridiagonal matrix resulting from

the discretization of the second-order derivative. The subscript denotes the considered space direction. In

general, the first component in the superscript denotes the destination variable and the second the origina-

tion variable. The number of rows/columns of a matrix is the number of unknowns of the destination/orig-

ination variable in the direction specified by the subscript. Note that the order of Ivvx is one more than that
of Iuux and the other way around for the y-direction. By writing the equations in matrix form, we implicitly

have pinned down the ordering of the unknowns; the horizontal planes are ordered one after another and

within a horizontal plane, the unknowns are ordered on lines in x-direction.

The matrices describing the discrete gradient operator are given by
Bu ¼ Iuuz � Iuuy � Dup
x ; ð18aÞ

Bv ¼ Ivvz � Dvp
y � Ivvx ; ð18bÞ

Bw ¼ Dwp
z � Iwwy � Iwwx ; ð18cÞ
where D is a bidiagonal matrix resulting from the discretization of the first order derivative. Note that

Iuuz ¼ Ivvz ; I
uu
y ¼ Iwwy and Ivvx ¼ Iwwx . Finally, the discrete Coriolis term can be written as
F u ¼ f Iuuz �Muv
y �Muv

x

� �
; ð19Þ
where Muv
� denotes an averaging in the direction given in the subscript. Using these building blocks, the dis-

crete momentum equations and continuity equations give rise to the linear system
Lu F u 0 Bu

�F T
u Lv 0 Bv

0 0 0 Bw

BT
u BT

v BT
w 0

2
6664

3
7775

u

v

w

p

2
6664

3
7775 ¼

0

0

T

0

2
6664

3
7775; ð20Þ
where the right-hand side contains the buoyancy forcing.

In Appendix A, the technical details are provided how the splitting in a barotropic and a baroclinic part

is accomplished in the discrete equations. From the resulting system of equations as shown in (35), observe

that the barotropic and baroclinic parts can be solved completely independent of each other. Since the

right-hand side for the vertical averaged unknowns is zero, it follows that also in the discrete case �u and
�v are zero and �p is constant. This is due to the fact that we only have temperature forcing.

The right-hand side of the baroclinic part can be made more explicit. First, we have to determine ~p. To
simplify this computation we do it on the continuous counterpart, which will give the same solution since

the employed discretization is second-order accurate and hence exact for the linear solutions which follow.

So from (15) we find ~p ¼ ðcy þ bÞðzþ D=2Þ. Now the right-hand side can be found. Since there is no depen-

dency on x in ~p, it follows that Bu~p ¼ 0 in (34). There is however a dependency on y leading to

Bv~p ¼ cðzþ D=2Þ. So the nonzero part of the right-hand side does not vary in horizontal directions. Since,

the operations following (34) only act in vertical directions these conclusions carry over to (35). So our

problem boils down to
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~Lu
~F u

�~F
T

u
~Lv

" #
�u

�v

� �
¼

0

c

� �
; ð21Þ
where c is constant for every horizontal plane, say ci for the ith plane. For the definition of the other matri-

ces we refer to Appendix A.

In the sequel we will solve this baroclinic part by Fourier transformation, which will allow us to study

the influence of high-frequency components on the solution. For completeness, once u, v and p are deter-

mined, w can be solved from the continuity equation. The associated system is overdetermined but it is easy
to show that the right-hand side is in the range of the matrix.
4.2. C-grid: Fourier analysis

In this section, we solve the baroclinic part (21) using the Fourier sine transformation. By comparing the

magnitude of high and low-frequency Fourier components we can predict when wiggles become visible in

the solution.

First we discuss the precise form of the Fourier basis functions. Since we have for the u and v variables
Dirichlet boundary conditions, we can simply make an odd periodic extension, or equivalently we have to

deal with a sine expansion. Say now that we have in x direction N equally-spaced internal points. The Fou-

rier basis vectors for the u-points are sinðkjp=ðN þ 1ÞÞ where 1 6 j 6 N for k = 1, . . .,N. The v-points have

one more internal point in x-direction. Its Fourier basis vectors are sinðkðj� 1
2
Þp=ðN þ 1ÞÞ where

1 6 j 6 N + 1, for k = 1, . . .,N + 1. (Note that for k = N + 1 we obtain a sawtooth basis vector and for k

close to N + 1 it resembles such a vector.) For later reference we also give the length of the deduced eigen-

vectors: The vector at the u-points has length
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN þ 1Þ=2

p
and the one at the v-points has the same length

for k 6 N but for k = N + 1 it has length
ffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1

p
.

Having determined the basis functions we can now go on with finding the eigenvalues (or symbols) of the

operators occurring in the matrix of (21). Since the basis vectors are appropriate combinations of elemen-

tary complex exponential exp(i/) which in itself is an eigenfunction of difference operators, these basis vec-

tors give us immediately the eigenvalues of Guu
x and Gvv

x which are simply a(k) = �4sin2(kp/(2(N + 1)))/h2,

where h = L/(N + 1), be it that the latter matrix has one more eigenvalue, i.e. for k = N + 1 an eigenvalue

�4/h2.

Applying Muv
x to the Fourier basis function at the v-points leads to:
1

2
sin k jþ 1

2

� �
p=ðN þ 1Þ

� �
þ sin k j� 1

2

� �
p=ðN þ 1Þ

� �� �
¼ cosðkp=ð2ðN þ 1ÞÞÞ sinðkjp=ðN þ 1ÞÞ.
So it gives us precisely the eigenvector for the u-points and an eigenvalue b(k) = cos(kp/(2(N + 1))). Note

that there is no contribution for k = N + 1. Conversely applying Mvu
x to the eigenvector at the u-points gives

the same eigenvalue.

With the foregoing the matrices of the system (21) can be diagonalized by the Fourier sine transfor-

mation and now we have to compute the according Fourier transform of the right-hand side. Since we

have already found that the right-hand side is constant for every horizontal plane we have to study in

essence the inner products of a basis vector with the constant vector in particular for smooth modes,

which are strongly present in the continuous solution, and for highly oscillatory modes, which generate
the wiggles. For convenience we introduce h = kp/(N + 1); note that it runs between 0 and p. Herewith

the inner product of a constant vector with entries one with the basis function for the u-points in

x-direction yields:
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XN
j¼1

sinðjhÞ ¼ 1

2i

XN
j¼1

expðijhÞ � expð�ijhÞ½ �

¼ 1

2i

expðihÞ � expðiðN þ 1ÞhÞ
1� expðihÞ � expð�ihÞ � expð�iðN þ 1ÞhÞ

1� expð�ihÞ

� �
¼ 1

2
ð1� ð�1ÞkÞ 1

tanðh=2Þ .
For small h we have for odd k the approximation tan�1ðh=2Þ � 2=h ¼ 2ðN þ 1Þ=ðkpÞ. For h close to p we

introduce ĥ ¼ p� h ¼ ðN þ 1� kÞp=ðN þ 1Þ and find tan�1ðh=2Þ ¼ tanðĥ=2Þ � ĥ=2 ¼ ðN þ 1� kÞp=
ð2ðN þ 1ÞÞ. So the ratio of the magnitude of the high-frequency coefficient (occurring for k = N) and that

of the low-frequency coefficient (occurring for k = 1) (the tangent function is monotonous on this interval)
behaves as 1/N2.

The same process for the other basis vectors yields:
XNþ1

j¼1

sin j� 1

2

� �
h

� �
¼ 1

2i

XNþ1

j¼1

½expð�ih=2Þ expðijhÞ � expðih=2Þ expð�ijhÞ�

¼ 1

2i
expð�ih=2Þ expðihÞ � expðiðN þ 2ÞhÞ

1� expðihÞ � expðih=2Þ expð�ihÞ � expð�iðN þ 2ÞhÞ
1� expð�ihÞ

� �

¼ 1

2
ð1� ð�1ÞkÞ 1

sinðh=2Þ .
For small h this is very similar to the previous result. So the magnitude of the low-frequency modes are

equal in both cases as may be expected. For h in the vicinity of p it is different. The result is
sin�1ðh=2Þ ¼ cos�1ðĥ=2Þ � 1. Note that in this case the ratio of the magnitude of high-frequency coefficient

and that of the low-frequency mode behaves as 1/N. Hence the magnitude of the high-frequency mode is in

this case much larger than in the previous case.

We now have all ingredients to write down the transformed system resulting in a series of 2 · 2 systems

for the Fourier coefficients of �u and �v. From this, we can compute the amplitude of every frequency mode in

the solution. We saw that we only have a nonzero right-hand side if k and l are odd. For convenience we

also assume N odd, in order to avoid twiddling around with an extra factor
ffiffiffi
2

p
if k = N + 1. For plane i the

Fourier transform of system (21) assumes the form
AH~akl f ~bkl

�f ~bkl AH~akl

" #
ukl
vkl

� �
¼

0
2ci

tanðlp=ð2ðNþ1ÞÞÞ sinðkp=ð2ðNþ1ÞÞÞðNþ1Þ

" #
;

where ~akl ¼ aðkÞ þ aðlÞ þ AV

AH
ðKzuÞi; ~b ¼ bðkÞbðlÞ, and the factor (N + 1)/2 is the square of the length of the

eigenvectors. In fact, the Fourier coefficients ukl and vkl do also depend on i but we omit this index for

convenience since it does not play a role in the sequel.

This system with two unknowns gives for the Fourier coefficient vkl the solution:
vkl ¼
AH~akl

A2
H~a

2
kl þ f 2~b

2

kl

2ci
tanðlp=ð2ðN þ 1ÞÞÞ sinðkp=ð2ðN þ 1ÞÞÞðN þ 1Þ .
Due to the zero right-hand side in the first row, the solution for ukl is a factor times that for vkl:
ukl ¼ � f ~bkl

AH~akl
vkl. ð22Þ
These two expressions give us the amplitude of every frequency mode in the solution, which allows to study its

importance. First we consider the importance of the v-field with respect to the u-field, which is determined by
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the factor in (22). Since the solution is mainly built up by the low-frequency components, we compute this fac-

tor for k = l = 1. Now ~a11 � 2að1Þ � �2p2=L2, since AV

AH
ðKzuÞi is in practice chosen as small as possible and is

therefore much less than a(1), it follows that
u11
v11

¼ �f ~b11

AH~a11
� fL2

2AHp2
. ð23Þ
For AH = 1.6 · 105 and AH = 1.6 · 107, these values give a ratio of magnitude approximately 1100 and

11, respectively. So for the small value of AH the horizontal velocity dominates strongly over the

meridional velocity and it does less for the large value of AH. This is reflected in the plots in Section 3.
The foregoing shows that the horizontal velocities dominate in the solution. Therefore, we compute the

ratio of the Fourier coefficient for a high-frequency component and that for a low-frequency component of

the horizontal velocity in order to determine for which mesh size the considered high-frequency component

will become important in the solution. For the latter we simply take k = 1, l = 1 and for the former we take

k = N, l = 1. A scan along the high-frequency modes k = N, l free and the other way around revealed that

the chosen high-frequency mode has the largest amplitude. This is already clear if the product of the tangent

and the sine is considered which is minimal in the case taken above. So we picked the most critical high-

frequency component, which has a sawtooth like behavior in x-direction.
Also AH is chosen as small as possible and hence A2

H~a
2
11 þ f 2~b

2

11 � f 2. The tangent and sine function in

the dominator are assumed equal and approximated by p/2(N + 1) = ph/(2L). Hence the Fourier coefficient

is
u11 � � fL2

2AHp2

2AHp2=L2

f 2

2L
ph

� �2
2ci

N þ 1
¼ 1

f
2L
ph

� �2
2ci

N þ 1
. ð24Þ
For k = N, l = 1, it follows that ~aN ;1 � aðN þ 1Þ ¼ 4=h2 and ~bN ;1 � bðNÞ ¼ sinðp=2ðN þ 1ÞÞ � ph=ð2LÞ.
Herewith the Fourier coefficient becomes
uN ;1 � � fph=ð2LÞ
ðAHð4=h2ÞÞ2 þ f 2ðph=ð2LÞÞ2

2L
ph

2ci
N þ 1

¼ � f

ðAHð4=h2ÞÞ2 þ f 2ðph=ð2LÞÞ2
2ci

N þ 1
.

The ratio of these two expressions is
uN ;1

u11
� f 2ðph=ð2LÞÞ2

ðAHð4=h2ÞÞ2 þ f 2ðph=ð2LÞÞ2
¼ 1

8AHL
pfh3

� �2
þ 1

< min 1;
pfh3

8AHL

� �2
 !

. ð25Þ
This suggests that the mesh size h should be chosen such that
h3 � 8AHL
pf
in order to make high-frequency error invisible with respect to the solution. If the Ekman boundary

thickness dE ¼
ffiffiffiffiffiffiffiffiffiffiffi
AH=f

p
is defined, and the mesh size is scaled with L, i.e. Dx = h/L, then this condition

becomes
ðDxÞ3 � 8

p
dE
L

� �2

ð26Þ
or
Dx � 2

p1=3

dE
L

� �2=3

. ð27Þ
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For AH = 1.6 · 105 we find Dx � 0.05, so h � 300 km, and for AH = 1.6 · 107we require Dx � 0.22, so

h � 1300 km. So in our model problem posed at the start of Section 4 the mesh size is about 400 km. Hence

uN,1/u11 will be close to one for small AH; this is precisely what is observed in Fig. 3(b).

Remark. It is also interesting to study the ratio for the vkl. This ratio is simply
Fig. 6.
vN ;1

v11
¼ uN ;1

u11

~aN ;1

~a1;1~bN ;1

� uN ;1

u11

4

h2

2 p
L

� 	2 ph
2L

¼ 4
L
ph

� �3 uN ;1

u11
. ð28Þ
In the cases studied, the multiplying factor is at most about 500, so there will be large errors in vkl, how-

ever since u11 is a thousand times larger (derived above), this is not seen in the plot.

This analysis shows that with the smaller value of AH a strong amplification of the error will occur, while

with the larger value of AH the error will not dominate over the solution. Note that due to the high expo-

nent of h, modest refinement may already result in a large reduction of the unwanted high-frequency

components. The conclusion of this elaborate section is that on the C-grid with no-slip boundary conditions

the wiggles result from a combination of the averaging of velocities for the Coriolis force, which does not
see high-frequency components well, and the centered application of the Dirichlet boundary condition

which gives a relative large Fourier coefficient for the high-frequency components resulting from the Fou-

rier transform of the constant.

4.3. B-grid: discretization and Fourier analysis

In short, we will repeat the analysis for the B-grid. The positioning of the variables is depicted in Fig. 6.

It shows the projections of the 3D cell on which the mass conservation law is discretized. Also here straight-
forward central differences are used for the discretization (in the linear constant mesh size case this is equal

to finite volume discretization [15]).

Since here u and v coincide, it holds that Lv = Lu and F u ¼ f ðIuuz � Iuuy � Iuux Þ. Since in the vertical direc-

tion the staggering is as on the C-grid we have that Dwp
z is equal to that on the C-grid, moreover Guu

z and Gvv
z

are equal, so we arrive at an equation similar to (35). In the buoyancy driven case the vertical averaged

velocities are again zero and the vertical averaged pressure may be any linear combination of a constant

and a checkerboard mode. The latter mode is due to the averaging which is necessary for Bu and Bv.

The Fourier basis functions are here only sin(kjp/(N + 1)). With all ingredients computed in the C-grid
case we can immediately pose the system for the Fourier coefficients.
AH~akl f

�f AH~akl

� �
ukl
vkl

� �
¼

0
2ci

tanðlp=ð2ðNþ1ÞÞÞ tanðkp=ð2ðNþ1ÞÞÞðNþ1Þ

" #
;

so the sine is replaced by a tangent and ~bkl is one here. Hence, now vkl is
Positioning of variables in B-grid, topview (left) and vertical cross section (right). The vertical layout is called the Lorenz grid.
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vkl ¼
AH~akl

A2
H~a

2
kl þ f 2

2

tanðlp=ð2ðN þ 1ÞÞÞ tanðkp=ð2ðN þ 1ÞÞÞðN þ 1Þ ci
and
ukl ¼ � f
AH~akl

vkl.
The Fourier coefficient for k = 1 and l = 1 is equal to the one on the C-grid (24), which has to be the case

due to consistency of the discretizations. For k = N and l = 1 we find the Fourier coefficient (note that

tan(1p/(2(N + 1))) tan(Np/(2(N + 1))) = 1)
uN ;1 �
�f

4AH

h2

� �2
þ f 2

2ci
N þ 1

.

Hence the ratio in this case is
uN ;1

u11
�

ph
2L

� 	2
1þ 4AH

fh2

� �2 < ph
2L

� �2

. ð29Þ
For the values given the last quantity is approximately 0.01, hence disturbances will not be seen in plots.

This approximation is quite sharp for the small value of AH since then the fraction in the denominator is

0.0016. For the value of AH = 1.6 · 107, it is 16.
It is also interesting to look to the ratio vN,1/v11. This is simply ~aN ;1=~a11 times the ratio for ukl resulting in
1

2

1

1þ 4AH

fh2

� �2 < 1

2
min 1;

fh2

4AH

� �2
 !

. ð30Þ
So for the small value of AH the ratio will be almost a half and hence the mode may be visible in vkl. For

the large value of AH, it is 1/34 and hence it will not be visible. Note that for k = 1,l = N precisely the same

result is obtained.
5. Summary and discussion

In this paper, we have tackled a relatively old problem on the origin of wiggles in numerical models of

thermally driven midlatitude steady ocean flows. Whereas in B-grid formulations, one can use values of the

lateral friction coefficient AH far below that needed to resolve the lateral Ekman layers, C-grid formulations

are restricted to values of AH for which this boundary layer is resolved. We have shown that this is due to
amplification of the high-frequency components in the numerical scheme. This amplification is different in

B-grid and C-grid formulations due to the discretization of the Coriolis terms on the different grids.

Our analysis provides more information than, for example, that in Wajsowicz and Gill [22] and Adcroft

et al. [1], where one uses dispersion relations to study properties of linearized equations and the numerical

scheme chosen. To see this, consider the formal linear equation
ut ¼ Lu� b; ð31Þ
where L is a differential operator and b does not depend on t.

In the transient case with b = 0 (as in Ref. [1]), the form exp(kt � ikx) is substituted into (31) and it is

found that k is a function of the wave number k. Note that k is an eigenvalue of L. In general, k will be
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complex; the real and imaginary part determine the damping and propagation of the wave with wave num-

ber k, respectively. If the real part is zero, we find the so-called dispersion relation. In an analogous way one

can find such a relation for the discrete equation. Such a relation may reveal that the propagation and

damping of some waves on the computational grid is close to zero, i.e. k � 0, while it is not for the same

wave in the continuous case. Or otherwise stated, L times this wave is (nearly) zero. This makes it hard to
get rid of these so-called computational modes. Whether we really will see these computational modes in

plots is determined by the magnitude of the mode in the initial condition. In the steady case considered

here, i.e. ut = 0, we look for a linear combination of terms exp(�ikx) such that L times this linear combi-

nation is precisely b. The coefficients are now determined by b. Such a coefficient may be large if L times the

corresponding exponential is nearly zero. So if the eigenvalue k of L is nearly zero then this may result in a

large coefficient for the corresponding exponential.

In summary, the same modes are causing problems in both the transient and stationary cases but to

determine the magnitude of such a mode one has to follow different approaches. In the transient case,
one has to determine its strength in the initial condition; such an analysis, however, is rarely done [1]. In

the steady case, one has to determine the strength of such a mode in b and divide the resulting coefficient

by the corresponding eigenvalue. In our case here, such an analysis is crucial in order to determine for

which value of the lateral viscosity AH, the computational mode becomes a critical disturbance of the solu-

tion. Our analysis indicates that as soon as the Ekman boundary layer is not resolved, high-frequency com-

ponents become amplified and hence deteriorate the solution. Since all equations are solved as one system

of coupled equations the deterioration extends over the whole domain.

It was pointed out in the previous section that, for the model problem studied, the B-grid is superior to
the C-grid. An important question is whether this superiority is still true for smaller mesh sizes. Usually in

ocean models, which such a simple representation of mixing, the value of AH is chosen such that the Munk

layer is resolved [5]. This leads to the relation AH = 8h3b0 where b0 � 2 · 10�11 m�1 s�1. If we substitute this

relation into (25) for the C-grid formulation, it is found that the ratio uN,1/u11 becomes independent of the

mesh size. So no improvement may be expected from grid refinement. For the ratio vN,1/v11 the situation is

worse as, according to (28), this ratio will behave as h�3. Fortunately, the ratio of u11 and v11 given by (23)

behaves also in this way if the Munk layer is resolved, and hence vN,1/u11 remains bounded. For the B-grid

the behavior is much better as the ratio (29) tends to zero if the mesh is refined. Moreover, Eq. (30) shows
that vN,1/v11 does remain bounded (by 1/2) and consequently vN,1/u11 behaves like h3 and will also tend to

zero if the mesh is refined.

For the above mesh-dependent choice of AH the C-grid solution will not converge to the B-grid solution

if the mesh is refined. This numerical phenomenon is due to the used expression for AH which is only valid

for the large mesh sizes generally employed in ocean flow computations. For smaller meshes the expression

for AH must be adapted because it may of course never become smaller than the viscosity of water. In that

stage the C-grid solution will converge to the solution of the B-grid upon mesh refinement.

The analysis further suggests some fixes to decrease the amplification of the high-frequency components
in the C-grid model. The ‘‘wet point’’ method [13] does quite well in reducing the energy of these compo-

nents but it does not change the fundamental existence of these modes. Although this will be explored in a

future study, some preliminary ideas on more efficient fixes are the following. One fix is to put v = 0 at

points outside of the domain which will affect the order of discretization of the meridional mixing of

momentum. It can be shown that amplification is decreased but tests with the single-hemispheric flow re-

vealed that this does not help to compute smooth solutions for substantially smaller values of AH. Another

fix is to take a different averaging for the Coriolis terms near the boundaries, where instead of four points,

only two points can be taken. We have not tested this as it may also deteriorate the order of the accuracy of
the solution, but it can be shown to lead to lower amplification factors and hence it may be possible to com-

pute flows at lower values of AH. A third fix is suggested by the work in [16], where the Coriolis terms are

discretized using a weighted-averaging scheme.
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In conclusion, it is shown here that in these buoyancy driven flows the discretization of the Coriolis

terms is crucially important when a boundary layer is not resolved. As the B-grid formulation has this prop-

erty, it is the desired formulation for this type of flows.
Acknowledgements

We thank one of the anonymous referees for his comments which improved the paper substantially. This

work was supported by the Netherlands Organization for Scientific Research (NWO) under a PIONIER

grant to HD and the project �Rapid changes in Complex Flows�. It was also supported by the Technology

Foundation STW, the Applied Science Division of NWO and the Technology Programme of the Ministry

of Economic Affairs.
Appendix A. Discrete barotropic/baroclinic mode splitting on the C-grid

As a first step we derive an equation for u, v and the vertical averaged pressure. Let epz be the constant unit-
length vector of dimension the number of internal p-points in vertical direction, thenwe introduce the splitting
p ¼ epz � �p þ ~p; ð32Þ

where �p is the vertical averaged pressure field times the square root of the number of pressure points in ver-

tical direction (the square root is only a matter of scaling). Associated with this splitting is the averaging

operator ðepz Þ
T � Iwwy � Iwwx . Of course, the vertical averaged ~p is zero, which leads, using the averaging oper-

ator, to the condition
ððepz Þ
T � Iwwy � Iwwx Þ~p ¼ 0. ð33Þ
Since, Dwp
z epz ¼ 0, it follows that Bwp ¼ Bw~p and that the averaging operator times Bw is zero. Due to the

former, ~p can be solved independently from the other unknowns from Bw~p ¼ T and (33). The latter allows

us to determine a system for u, v and �p, by premultiplying the continuity equation by the averaging oper-

ator. To facilitate the notation we introduce �Bu ¼ ðIuuy � Dup
x Þ, i.e. the horizontal part of Bu, so

Bu ¼ Iuuz � �Bu. Now it holds that Buðepz � �pÞ ¼ epz � ð�Bu�pÞ ¼ ðepz � �BuÞð1� �pÞ ¼ ðepz � �BuÞ�p. Likewise for

Bvðepz � �pÞ. Premultiplying the continuity equation by the averaging operator yields for BT
u :
ððepz Þ
T � Iwwy � Iwwx ÞBT

u ¼ ðepz Þ
T � Iuuy � ðDup

x Þ
T ¼ ðepz Þ

T � �BT

u ;
similarly for BT
v . The latter results in a 2D horizontal operator acting on the depth-averaged velocities (see

Remark below). We have arrived now at the following equation.
Lu F u epz � �Bu

�F T
u Lv epz � �Bv

ðepz Þ
T � �BT

u ðepz Þ
T � �BT

v 0

2
64

3
75

u

v

�p

2
64
3
75 ¼

�Bu~p

�Bv~p

0

2
64

3
75. ð34Þ
Remark. Note that
ðepz Þ
T � �BT

u ¼ ðepz Þ
T � Iuuy � ðDup

x Þ
T ¼ ð1� Iuuy � ðDup

x Þ
TÞððepz Þ

T � Iuuy � Iuux Þ

¼ ðIuuy � ðDup
x Þ

TÞððepz Þ
T � Iuuy � Iuux Þ ¼ �BT

u ððepz Þ
T � Iuuy � Iuux Þ.
So ðepz Þ
T � �BT

u u is just the application of �BT

u to the (scaled) vertical average of u.
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Due to the Neumann conditions at the bottom and surface also the depth-averaged horizontal velocities

can be separated from those perpendicular to them. So it holds that also Guu
z e

u
z ¼ 0 and Gvv

z e
v
z ¼ 0 (in fact

euz ¼ evz). Furthermore, let the orthogonal matrix Uuu
z diagonalize the matrix Guu

z and we assume that the first

vector in this transformation matrix is the constant vector. We premultiply the first momentum equation by

ðUup
z Þ

T � Iuuy � Iuux , note that this matrix commutes with Bu, and similarly the second momentum equation.
This yields a new system
L̂u F u ep1z � �Bu

�F T
u L̂v ep1z � �Bv

ðep1zÞ
T � �BT

u ðep1zÞ
T � �BT

v 0

2
64

3
75

û

v̂

�p

2
64
3
75 ¼

�Bu~̂p

�Bv~̂p

0

2
64

3
75;
where L̂u ¼ AHðIuuz � ðIuuy � Guu
x þ Guu

y � Iuux ÞÞ þ AVðKzu � Iuuy � Iuux Þ; e
p
1z is the first unit vector and

û ¼ ½ðUup
z Þ

T � Iuuy � Iuux �u, likewise for the other variables with aˆ. Herewith the system is decoupled in ver-

tical direction. By rearranging we arrive at the desired barotropic–baroclinic separation. In detail, note that

the first diagonal element of Kzu is zero and that the first layer of ~̂p (recall the horizontal planes of un-
knowns are numbered one after another) is zero since the vertically averaged ~p is zero. Hence, the system

can be split in two parts:
�Lu
�F u

�Bu 0 0

��F T

u
�Lv Bv 0 0

�BT

u
�BT

v 0 0 0

0 0 0 ~Lu
~F u

0 0 0 �~F
T

u
~Lv

2
6666664

3
7777775

�u

�v

�p

�u

�v

2
6666664

3
7777775
¼

0

0

0

�~Bu
�~p

�~Bv
�~p

2
6666664

3
7777775
. ð35Þ
Here �Lu ¼ AHðIuuy � Guu
x þ Guu

y � Iuux Þ; �F u ¼ f ðMuv
y �Muv

x Þ leaving a genuine 2D equation for the vertical

averaged variables, i.e. the barotropic part, and ~Lu ¼ AHð~I
uu

z � Iuuy � Guu
x þ Guu

y � Iuux Þþ
AVð~Kzu � ðIuuy � Iuux ÞÞ; ~F u ¼ f ð~Iuuz �Muv

y �Muv
x Þ; ~Bu ¼ ~I

uu

z � Iuuy � Dup
x , where

~I
uu

z and ~Kzu follow from Iuuz and

Kzu by skipping the first row and column. Moreover �u is just û without the variables from the first layer

(i.e. �u), similarly for �u and �~p. The system for these equations is the baroclinic part.
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